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Fractal with microscopic anisotropy shows a unique type of macroscopic isotropy restoration phenomenon
that is absent in Euclidean space@M. T. Barlow et al., Phys. Rev. Lett.75, 3042#. In this paper the isotropy
restoration feature is considered for a family of two-dimensional Sierpin´ski gasket type fractal resistor net-
works. A parameterj is introduced to describe this phenomenon. Our numerical results show thatj satisfies
the scaling lawj; l 2a, where l is the system size anda is an exponent independent of the degree of
microscopic anisotropy, characterizing the isotropy restoration feature of the fractal systems. By changing the
underlying fractal structure towards the Euclidean triangular lattice through increasing the side lengthb of the
gasket generators, the fractal-to-Euclidean crossover behavior of the isotropy restoration feature is discussed.
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Recently, Barlow and co-workers reported a new type
restoration of macroscopic isotropy in fractal systems w
microscopic anisotropy@1#. The phenomenon is unique i
the sense that it is absent in uniform media such as reg
lattices or Euclidean spaces, while it is universal since it
be observed in many physical setups on a wide class of f
tal systems. In the present study we introduce a paramej
to describe this isotropy restoration phenomenon by study
a family of two-dimensional Sierpin´ski gasket~SG! type
fractal resistor networks, which are characterized by gen
tors of side lengthb. Our numerical results show that th
anisotropy parameterj obeys the scaling relationj; l 2a,
where l is the system size whereasa is an exponent inde
pendent of the degree of microscopic anisotropy and thu
believed to be able to characterize the isotropy restora
feature of the fractal systems.

On the other hand, the isotropy restoration feature is
sent in ordinary Euclidean space. Thus one may rightfu
address the question of what happens at the fracta
Euclidean crossover@2#. A similar question has been pose
and investigated for the thermodynamic properties of
Ising model@3#. To study the fractal-to-Euclidean crossov
behavior of the isotropy restoration feature, we calculate
isotropy restoration exponenta for a family of SG type re-
sistor networks with increasing generator side lengthb. It is
found that a is monotonously decreasing with the fract
dimensiondf and spectral dimensionds of the underlying
fractal structure. Asb is increased and the underlying fract
lattice approaches the Euclidean~triangular! lattice, the
crossover behavior of the exponenta from a finite to van-
ishing values is obtained.
571063-651X/98/57~6!/7294~3!/$15.00
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The model treated here is a generalized one of that in@1#.
The zero-stage SG resistor network is simply a triangle. T
first few stages of construction of the SG fractal family f
the members withb52 andb53 are shown in Fig. 1. The
fractal of stagen is obtained by aggregatingb(b11)/2 cop-

FIG. 1. First two members of the two-dimensional SG type
fractal resistor networks constructed from generators of side len
~a! b52, ~b! b53. A resistor of resistance 1 is associated with ea
bond in the horizontal direction while a resistor of resistancer is
associated to each of the remaining bonds of the network.
7294 © 1998 The American Physical Society



1
1
e
ng

t

to

ent

h
s

t is
sic

a-
s.

te
ic

,

ze

tion
rical

,

57 7295BRIEF REPORTS
ies of the (n21)th stage fractals in a way as shown in Fig.
For each stage of fractal network, a resistor of resistance
associated with each bond in the horizontal direction whil
resistor of resistancer is associated to each of the remaini
bonds of the network~see Fig. 1!. Here rÞ1 parametrized
the degree of basic microscopic anisotropy. Note tha
b52, the model reduces to that studied in@1#.

By repeated use of the star-triangle (Y-¹) transformation
relations@4#, anynth-stage fractal network can be reduced

FIG. 2. Finite size scaling behavior of the anisotropy parame
j l for a triangular resistor network with two typical values of bas
microscopic anisotropy~a! r 51.2 and~b! r 50.8. It is seen that the
system remains anisotropic on the macroscopic scale.

FIG. 3. Plot of lnujlu as a function of lnl for a SG type of fractal
resistor network withb54 and different values ofr , suggesting
that j l satisfies the scaling lawj l; l 2a, with the exponenta inde-
pendent of the value ofr .
.
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a simple equivalent triangle network. LetXl denote the re-
sistance for the bond in horizontal direction of an equival
triangle network that is obtained from annth-stage fractal
network of sizel 5bn, andYl denote the resistance for eac
of the remaining two bonds in such a triangle. It follow
from the definition that, for a zero-stage network,

X151, Y15r . ~1!

Define the anisotropy parameter asj l[ ln(Yl /Xl), which mea-
sures the degree of anisotropy of the fractal network tha
of size l and composed of a resistance element with ba
microscopic anisotropyY1 /X15r . Starting from the initial
condition ~1!, the anisotropy parameterj l can be evaluated
numerically based on a series of star-triangle transform
tions. The numerical calculations are performed as follow

r

FIG. 4. Plot of lnjl as a function of lnl for a SG type of fractal
resistor network withr 5100 andb52, 4, 8, 16, 32, 64, 128, 256
512, 1024, and 2048~from lower to upper!, showing the underlying
structure dependence of the exponenta. The horizontal dashed line
is the result for a triangular network inferred from the finite si
scaling as shown in Fig. 2.

FIG. 5. Plot of the isotropy restoration exponenta as a function
of fractal dimensiondf and spectral dimensionds , showing the
fractal-to-Euclidean crossover behavior of the isotropy restora
feature in fractal space. The dashed lines are obtained by nume
interpolation from the calculated results for fractal networks@up to
b52048 (df51.9092) andb51600 (ds51.6992) for df and ds

dependence ofa, respectively# and that for the triangular network
whereds5df52 anda50.
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First, we calculate the anisotropy parameterj l as a func-
tion of sizel for a regular triangular network, which is sim
ply a first stage SG type network withb5 l . The results are
shown in Fig. 2 for two typical values ofr . The finite size
scaling suggests that the triangular network retain finite
isotropy on the macroscopic scale due to the basic mi
scopic anisotropy, as is widely believed@1#.

Then we evaluatej l for a SG type fractal network with a
variety ofb andr . Figure 3 shows, as an example, the resu
for b54 with different values ofr . It is observed that the
anisotropy parameterj l satisfies the scaling law

j l; l 2a, ~2!

with the exponenta independent ofr . In Fig. 4 we present
the results for SG type networks with different values ofb,
which indicates that the exponenta depends on the underly
ing fractal structure.

Finally, we study the fractal-to-Euclidean crossover b
havior of the isotropy restoration feature by changing
underlying fractal lattice towards the Euclidean triangu
lattice. This is achieved by increasing the value ofb @1#. The
results are shown in Fig. 5 for the exponenta as a function
of the fractal dimensiondf as well as the spectral dimensio
ds . We have calculateddf dependence ofa up to b52048
(df51.9092) andds dependence ofa up to b51600 (ds
51.6992). Heredf5 lnb(b11)/2/ lnb, while the spectral di-
mensionds is obtained by anexactreal space renormaliza
tion group approach based on the dynamic scaling the
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@5,6#. From Fig. 5 the crossover of the isotropy restorati
exponenta from fractal space~finite value! to Euclidean
space~vanishing value! is observed.

Although the results presented here are specific to a re
tor network on finitely ramified fractals, we tend to believ
that, with an appropriate definition of anisotropy parame
j l , the scaling lawj l; l 2a can be observed in various phys
cal setups such as diffusion and random walk on a wide c
of fractals. As a result, an exponent that characterizes
universal phenomenon of the macroscopic isotropy rest
tion in fractal space is needed to emphasize the fractal c
acteristics. In addition, it is also interesting to establish
possible relationship between the isotropy restoration ex
nenta and the fractal~spectral! dimension as well as othe
exponents@7# in fractal.

In summary, we have studied the isotropy restoration p
nomenon on a family of SG type fractal resistor networks
parameter is introduced to describe this phenomenon w
satisfies the scaling relationj l; l 2a. By changing the under-
lying fractal lattice towards the Euclidean triangular lattic
the fractal-to-Euclidean crossover of the isotropy restorat
exponenta is observed. It is conjectured that this exponen
universal on a wide class of fractals in the sense that i
independent of the degree of microscopic anisotropy. The
fore one more exponent, the isotropy restoration expon
may be necessary to emphasize the universal phenomen
macroscopic isotropy restoration in fractals.

This work is partly supported by NSFC through Gra
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