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Fractal with microscopic anisotropy shows a unique type of macroscopic isotropy restoration phenomenon
that is absent in Euclidean spadd. T. Barlow et al, Phys. Rev. Lett75, 3042. In this paper the isotropy
restoration feature is considered for a family of two-dimensional Siskpigasket type fractal resistor net-
works. A paramete€ is introduced to describe this phenomenon. Our numerical results shoy Hadisfies
the scaling lawé~I1"¢, wherel is the system size and is an exponent independent of the degree of
microscopic anisotropy, characterizing the isotropy restoration feature of the fractal systems. By changing the
underlying fractal structure towards the Euclidean triangular lattice through increasing the sideblefdgtie
gasket generators, the fractal-to-Euclidean crossover behavior of the isotropy restoration feature is discussed.
[S1063-651X98)09306-4

PACS numbd(s): 05.40:+j, 05.60+w

Recently, Barlow and co-workers reported a new type of The model treated here is a generalized one of thgt]in
restoration of macroscopic isotropy in fractal systems withThe zero-stage SG resistor network is simply a triangle. The
microscopic anisotropy1]. The phenomenon is unique in first few stages of construction of the SG fractal family for
the sense that it is absent in uniform media such as reguldhe members with=2 andb=3 are shown in Fig. 1. The
lattices or Euclidean spaces, while it is universal since it carractal of stagen is obtained by aggregatiriy(b+1)/2 cop-
be observed in many physical setups on a wide class of frac-
tal systems. In the present study we introduce a paranjeter
to describe this isotropy restoratioq phenomenon by studying( )
a family of two-dimensional Sierpgki gasket(SG) type
fractal resistor networks, which are characterized by genera-
tors of side lengtth. Our numerical results show that the
anisotropy parametef obeys the scaling relatiog~1"~¢,
wherel is the system size whereasis an exponent inde-
pendent of the degree of microscopic anisotropy and thus is
believed to be able to characterize the isotropy restoration
feature of the fractal systems.

On the other hand, the isotropy restoration feature is ab-
sent in ordinary Euclidean space. Thus one may rightfully (b)
address the question of what happens at the fractal-to-
Euclidean crossovdr]. A similar question has been posed
and investigated for the thermodynamic properties of the

Ising model[3]. To study the fractal-to-Euclidean crossover A 7N 4

behavior of the isotropy restoration feature, we calculate the AN NN NN

isotropy restoration exponent for a family of SG type re- NSNS NSNS NS NSNS NS N

sistor networks with increasing generator side lerwtlit is 1 ottt
n= n=2a

found thata is monotonously decreasing with the fractal

dimensiond; and spectral dimensiods of the underlying FIG. 1. First two members of the two-dimensional SG type of
fractal structure. A® is increased and the underlying fractal fractal resistor networks constructed from generators of side length
lattice approaches the Euclidedtriangulay lattice, the (a) b=2, (b) b=3. A resistor of resistance 1 is associated with each
crossover behavior of the exponemtfrom a finite to van-  bond in the horizontal direction while a resistor of resistands
ishing values is obtained. associated to each of the remaining bonds of the network.
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—0.10 FIG. 4. Plot of Ing as a function of Il for a SG type of fractal
resistor network witlr =100 andb=2, 4, 8, 16, 32, 64, 128, 256,
s 512, 1024, and 2048rom lower to upper, showing the underlying
structure dependence of the exponentThe horizontal dashed line
—0.11 is the result for a triangular network inferred from the finite size
scaling as shown in Fig. 2.
a simple equivalent triangle network. L¥t denote the re-
—0.12 ' ‘ ' ‘! sistance for the bond in horizontal direction of an equivalent
0.0 0.1 0.2 0.3 0.4

triangle network that is obtained from arth-stage fractal
network of sizel =b", andY, denote the resistance for each
of the remaining two bonds in such a triangle. It follows

FIG. 2. Finite size scaling behavior of the anisotropy parametefrom the definition that, for a zero-stage network,

¢, for a triangular resistor network with two typical values of basic
microscopic anisotropa) r =1.2 and(b) r=0.8. It is seen that the

system remains anisotropic on the macroscopic scale.

X;=1, Y;=r. (1)

Define the anisotropy parameter@s:In(Y,/X,), which mea-

ies of the fi— 1)th stage fractals in a way as shown in Fig. 1.SUres the degree of anisotropy of the fractal network that !s
For each stage of fractal network, a resistor of resistance 1 &f sizel and composed of a resistance element with basic
associated with each bond in the horizontal direction while gnicroscopic anisotropy; /X,=r. Starting from the initial
resistor of resistanceis associated to each of the remaining condition (1), the anisotropy parametéy can be evaluated
bonds of the networksee Fig. 1 Herer#1 parametrized numerlcally base.d on a series of star-triangle transforma-
the degree of basic microscopic anisotropy. Note that itions. The numerical calculations are performed as follows.

b=2, the model reduces to that studied i.
By repeated use of the star-trianghé-¥) transformation

relations[4], anynth-stage fractal network can be reduced to
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FIG. 3. Plot of Ing| as a function of I for a SG type of fractal
resistor network withb=4 and different values of, suggesting
that ¢, satisfies the scaling lag;~1~¢, with the exponent inde-
pendent of the value af.
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FIG. 5. Plot of the isotropy restoration exponenas a function
of fractal dimensiond; and spectral dimensiodg, showing the
fractal-to-Euclidean crossover behavior of the isotropy restoration
feature in fractal space. The dashed lines are obtained by numerical
interpolation from the calculated results for fractal netwdns to
b=2048 ([d;=1.9092) andb=1600 ds=1.6992) ford; and dg
dependence of, respectively and that for the triangular network,
whered,=d;=2 anda=0.
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First, we calculate the anisotropy paramefeas a func- [5,6]. From Fig. 5 the crossover of the isotropy restoration
tion of sizel for a regular triangular network, which is sim- exponenta from fractal spacgfinite valug to Euclidean
ply a first stage SG type network with=1. The results are space(vanishing valugis observed.
shown in Fig. 2 for two typical values af. The finite size Although the results presented here are specific to a resis-
scaling suggests that the triangular network retain finite antor network on finitely ramified fractals, we tend to believe
isotropy on the macroscopic scale due to the basic microhat, with an appropriate definition of anisotropy parameter

scopic anisotropy, as is widely believet]. &, the scaling lawg;~1~ can be observed in various physi-
Then we evaluaté, for a SG type fractal network with a cal setups such as diffusion and random walk on a wide class

variety ofb andr. Figure 3 shows, as an example, the resultsOf _fractals. As a result, an exponent thafc c_haracterizes the

for b=4 with different values of. It is observed that the qnlvgrsal phenomen_on of the MACTOSCOpIC Isotropy restora-

anisotropy parameted; satisfies thé scaling law tion in fractal space is needed to emphasize the fractal char-
|

acteristics. In addition, it is also interesting to establish a
g~1¢ (2) possible relationship between the isotropy restoration expo-
! ’ nenta and the fractalspectral dimension as well as other

with the exponentr independent of . In Fig. 4 we present exponentd7] in fractal. _ _ _
the results for SG type networks with different valueshof In summary, we have studied the isotropy restoration phe-

which indicates that the exponemtdepends on the underly- nomenon on a family of SG type fractal resistor networks. A
ing fractal structure parameter is introduced to describe this phenomenon which
Finally, we study the fractal-to-Euclidean crossover be-Satisfies the scaling relatigi~1 . By changing the under-
havior of,the isotropy restoration feature by chandin theIylng fractal lattice towards the Euclidean triangular lattice,

; by 0y 9INg & e Fractal-to-Euclidean crossover of the isotropy restoration
unqlerlylng f_ractall lattice tqwards .the Euclidean trIangUIarexponenta is observed. It is conjectured that this exponent is
Iatt|c|(te. This 'f] aCh'(.aVT:q by5|?cr?ssmg the valudacﬁfﬂ]. 'I:[he universal on a wide class of fractals in the sense that it is
results are shown in Fg. > for the exponenas a unction independent of the degree of microscopic anisotropy. There-
of the fractal dimensionl; as well as the spectral dimension fore one more exponent, the isotropy restoration exponent,
ds. We have calculated; dependence ok up tob=2048 .\, he necessary to emphasize the universal phenomenon of
(d;=1.9092) andds dependence of up to b=1600 (dg

) . macroscopic isotropy restoration in fractals.
=1.6992). Herad;=Inb(b+1)/2/ Inb, while the spectral di-
mensiond, is obtained by arexactreal space renormaliza- This work is partly supported by NSFC through Grant
tion group approach based on the dynamic scaling theoridumber 19704003.
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